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Abstract. The Simplicial Multi- Complexr (SMC) is a general multiresol-
ution model for representing k-dimensional spatial objects through sim-
plicial complexes. An SMC integrates several alternative representations
of an object and offers simple methods for handling representations at
variable resolution efficiently, thus providing a basis for the development
of applications that need to manage the level-of-detail of complex objects.
In this paper, we present general query operations on such models, we
describe and classify alternative data structures for encoding an SMC,
and we discuss the cost and performance of such structures.

1 Introduction

Geometric cell complexes (meshes) have a well-established role as discrete mod-
els of continuous domains and spatial objects in a variety of application fields,
including Geographic Tnformation Systems (GTSs), Computer Aided Design, vir-
tual reality, scientific visualization, etc. Tn particular, simplicial complexes (e.g.,
triangle and tetrahedra meshes) offer advantageous features such as adaptivity
to the shape of the entity, and ease of manipulation.

The accuracy of the representation achieved by a discrete geometric model
is somehow related to its resolution, i.e., to the relative size and number of its
cells. At the state-of-the-art, while the availability of data sets of larger and
larger size allows building models at higher and higher resolution, the computing
power and transmission bandwidth of networks are still insufficient to manage
such models at their full resolution. The need to trade-off between accuracy of
representation, and time and space constraints imposed by the applications has
motivated a burst of research on Level-of-Detail (LOD). The general idea behind
L.LOD can be summarized as: always use the best resolution you need — or you
can afford  and never use more than that. Tn order to apply this principle,
a mechanism is necessary, which can “administrate” resolution, by adapting a
mesh to the needs of an application, possibly varying its resolution over different
areas of the entity represented.

A number of different T.OD models have been proposed in the literature. Most
of them have been developed for applications to terrain modeling in GTSs (see,
for instance, [1,4,9]) and to surface representation in computer graphics and
virtual reality applications (see, for instance, [10,8,15,7]), and they are strongly
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characterized by the data structures and optimization techniques they adopt as
well as custom tailored to perform specific operations, and to work on specific
architectures. In this scenario, developers who would like to include T.OD features
in their applications are forced to implement their own models and mechanisms.
On the other hand, a wide range of potential applications for .LOD have been
devised, which require a common basis of operations (see, e.g., [3]). Therefore,
it seems desirable that the T.OD technology i1s brought to a more mature stage,
which allows developers to use it through a common interface, without the need
to care about many details.

In our previous work, we have developed a general model, called a Simplicial
Multi-Complexr (SMC), that can capture all LOD models based on simplicial
complexes as special cases [13,5, 14]. Based on such model, we have built systems
for managing the level of detail in terrains [2], and in free-form surfaces [3], and
we are currently developing an application in volume visualization.

In this paper, we consider general operations that can be performed on 1.OD
models and propose an analysis of cost and performance of their encoding data
structures. Trade-off between cost and performance 1s a key issue to make the
L.LOD technology suitable to a wide spectrum of applications and architectures in
order to achieve a more homogeneous and user-transparent use of LOD.

The Simplicial Multi-Complex is briefly described in Section 2, and general
query techniques on such model are outlined in Section 3. In Section 4, we ana-
lyze the spatial relations among entities in the SMC, which are fundamental to
support queries and traversal algorithms. In Section 5, we analyze different data
structures to encode SMCs in the general case, as well as in special cases, and we
discuss both the cost of such data structures, and their performance in support-
ing the extraction of spatial relations. In Section 6, we present some concluding
remarks.

2 Simplicial Multi-Complexes

In this section, we briefly review the main concepts about the Simplicial Multi-
Complex, a dimension-independent multiresolution simplicial model which ex-
tends the Multi-Triangulation presented in [13,5,14]. For the sake of brevity,
this subject is treated informally here. For a formal treatment and details see
[11].

In the remainder of the paper, we denote with £ and d two integer numbers
such that 0 < k < d. A k-dimensional simplexr ¢ 1s the locus of points that can be
expressed as the convex combination of k + 1 affinely independent points in RY,
called the wvertices of . Any simplex with vertices at a subset of the vertices of
o is called a facet of . A (reqular) k-dimensional simplicial compler in B is a
finite set X of k-simplices such that, for any pair of distinct simplices o1, 09 € X,
either o1 and o5 are disjoint, or their intersection is the set of facets shared by
o1 and 5. In what follows, a k-simplex will be always called a cell, and we will
deal only with complexes whose domain is a manifold (also called subdivided
manifolds).
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Fig.1. A sequence of five updates (numbered 1...5) progressively refining an
initial coarse triangle mesh. The area affected by each update 1s shaded.

(a) (c)

Fig. 2. Three meshes extracted from a two-dimensional SMC representing a
terrain (top view). (a) The triangulation has the highest possible resolution inside
arectangular window, and the lowest possible resolution outside it. (b) Resolution
inside a view frustum (wedge) is decreasing with the distance from its focus point,
while it is arbitrarily low outside it. (¢) Resolution is high only in the proximity
of a polyline.
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The intuitive idea behind a Simplicial Multi-Complez: (SMC) is the following:
consider a process that starts with a coarse simplicial complex and progressively
refines it by performing a sequence of local updates (see Figure 1). Each local
update replaces a group of cells with another group of cells at higher resolution.
An update Uy in the sequence directly depends on another update Uy preceding
it if U5 removes some cells introduced with U/7. The dependency relation between
updates is defined as the transitive closure of the direct dependency relation.
Only updates that depend on each other need to be performed in the given order;
mutually independent updates can be performed in arbitary order. For instance,
in the example of Figure 1, updates 3 and 4 are mutually independent, while
update 5 depends on both; thus, we must perform update 4 first, then followed
by 3 and 5.

An SMC abstracts from the totally ordered sequence by encoding a partial
order describing the mutual dependencies between pairs of updates. Updates
forming any subset closed with respect to the partial order, when performed in
a consistent sequence, generate a valid simplicial complex. Thus, it 1s possible
to perform more updates in some areas, and fewer updates elsewhere, hence
obtaining a complex whose resolution is variable in space. Such an operation is
known as selective refinement, and it is at the basis of LOD management. A few
results of selective refinement from an SMC representing a terrain are shown in
Figure 2.

An SMC is described by a directed acyclic graph (DAG). Each update is
a node of the DAG, while the arcs correspond to direct dependencies between
updates. Each arc is labeled with the collection of all cells of its source node that
are removed by its destination node. For convenience, we introduce two further
nodes: a root corresponding to the update creating the initial coarse complex,
which 1s connected with an arc to each update that removes some if 1ts cells; and
a drain, corresponding to the final deletion of the complex obtained by performing
all updates, which is connected with an arc from each update that creates some
of its cells. Also such arcs are labeled by cells in a consistent way. Figure 3 shows
the SMC corresponding to the collection of updates described in Figure 1.

A front of an SMC is a set of arcs containing exactly one arc on each directed
path from the root (see Figure 3). Since the DAG encodes a partial order, we say
that a node 18 before a front if 1t can be reached from the root without traversing
any arc of the front; otherwise the node i1s said to be after the front. Nodes lying
before a front define a consistent set of updates, and the corresponding simplicial
complex is formed by all cells labeling the arcs of the front [11]. By sweeping a
front through the DAG, we obtain a wide range of complexes, each characterized
by a different resolution, possibly variable in space.

In the applications, often an SMC is enriched with attribute information asso-
ciated with its cells. Examples are approximation errors (measuring the distance
of a cell from the object portion it approximates), colors, material properties,
etc.
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Fig.3. (a) The SMC built over the partially ordered set of mesh updates of
Figure 1. Each node represents an update, and it shows the two sets of simplices
removed and created in the update. Each arc represents the dependency between
two updates, and it is labelled by the triangles created in the first update, which
are removed in the second update. A front on the SMC contains the arcs inter-
sected by the thick dashed line; nodes lying before the front are highlighted. (b)
The triangle mesh associated with the front.
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3 A Fundamental Query on an SMC

Since an SMC provides several descriptions of a spatial object, a basic query
operation consists of selecting a complex which represents the object according
to some user-defined resolution requirements. This basic query provides a natural
support to variable resolution in many operations, such as:

point location, 1.e., finding the cell that contains a given point and such that
its resolution meets some user-defined requirements;

windowing, 1.e., finding a complex, that represents the portion of the object
lying inside a box, at a user-defined resolution;

ray casting, i.e., finding the cells that intersect a given ray at a user-defined
resolution;

perspective rendering: in this case, a complex is generated which represents
the portion of the object lying inside the view frustum, and whose resolution
18 higher near the viewpoint and decreases with the distance from it;
cut,1.e., sectioning with a hyperplane: the section is computed by first retriev-
ing the cells that intersect the given hyperplane and have a specific resolution.

In the most general case, resolution requirements are expressed through a
resolution filter, which is a user-defined function R that assigns to each cell o of
the SMC a real value R(o). Tntuitively, a resolution filter measures the “signed
difference” between the resolution of a cell and that required by the application:
R(o) > 0 means that the resolution of ¢ is not sufficient; R(¢) < 0 means that
the resolution of ¢ is higher than necessary. A cell such that R(s) < 0 is said
feasible.

For example, the meshes depicted in Figure 2 satisfy the following resolution
filters: in (a), R is negative for all cells outside the window, zero for all cells
inside it that are at the highest resolution, and positive for all others; in (b), R
18 negative for all cells outside the view frustum, while for a cell o inside it, R
18 decreasing with resolution of o, and with its distance from the focus point;
in (¢), R is negative for all cells not intersecting the polyline, zero for all cells
intersecting it that are at the highest resolution, and positive for all others.

The basic query on an SMC consists of retrieving the simplicial complex of
minimum size (i.e., composed by the smallest number of cells) which satisfies
a given resolution filter R (i.e., such that all its cells are feasible with respect
to R). Variants of this query are also described in [11]. The basic query can he
easily combined with a culling mechanism, which extracts only the subcomplex
intersecting a given Region Of Interest (ROT). This localized query permits to
implement operations like point location, windowing, etc.

Algorithms for mesh extraction [13,3,14, 11] sweep a front, through the DAG,
until an associated complex formed by feasible cells is found. Minimum size is
guaranteed by a front that lies as close as possible to the root of the SMC. In
the case of a localized query, spatial culling based on a ROT is incorporated
in the DAG traversal, hence using the structure of the SMC also as a sort of
spatial index. The key operations used by extraction algorithms consist in either
advancing the front after a node, when the resolution of the complex over that
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area 1s not sufficient, or moving it before a node when the resolution over that
area 1s higher than required.

The key 1ssues that have impact on the performance of such algorithms are:
the evaluation of the resolution function, which is application-dependent; and the
evaluation of mutual relations that occur among different entities of the SMC. The
cost of computing such relations is highly dependent on the amount of information
stored in the data structure.

4 Relations in a Simplicial Multi-Complex

In some applications, e.g., in computer graphics, 1t is often sufficient to represent
a simplicial complex by the collection of its cells, where each cell is described by
its vertices and its aftributes. In other applications, e.g., in GIS, in CAD, or in
scientific visualization, topological relations among vertices and cells of the mesh
must be maintained as well. A common choice is the winged data structure, which
stores, for each cell, the (k + 1) cells adjacent to it along its (k — 1)-facets [12].
Building the winged data structure for the mesh produced as the result of a query
on the SMC can be more or less expensive, depending on the data structure used
to encode the SMC.

In the following, we discuss the relations among the elements of an SMC,
which are needed in the traversal algorithms, and in building the winged data
structure for the output mesh.

There are essentially three kinds of relations in an SMC:

Relations on the DAG": they define the structure of the DAG describing the
SMC by relating its nodes and arcs.

Relations between the DAG and the cells of the SMC" they define the con-
nections between the elements of the DAG (arcs and nodes) and the cells
forming the SMC; in the definition given in Section 2, such a connection is
defined by labeling each arc of the DAG with the cells created by its source
node that are removed by its destination node.

Relations between the simplices of the SMC: they define the relations among
vertices and cells in the SMC.

The relations on the DAG are the standard relations in a directed graph:
Node-Are (NA ), which associates with a node its incoming and its outgoing arcs;
and Are-Node (AN), which associates with an arc its source and its destination.

The relations between the DAG and the cells of the SMC can be defined as
follows:

Are-Cell (AC) relation, which associates with an arc of the DAG the collection
of the cells labeling it.

Cell-Arc (CA) relation, which associates with a cell o of the SMC the arc of
the DAG whose label contains .

Node-Cell (NC) relation, which associates with a node U the cells created
and deleted by the corresponding update.
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Cell-Node (CN} relation, which associates with a cell o the node U introdu-
cing o in its corresponding update, and the node [/ removing o.

The relations between the simplices in an SMC we are interested in are:

the relation between a cell and its vertices, that we call Cell-Vertexr (CV)
relation;
the adjacency relation between two cells, which share a (k — 1)-facet, that we

call a Cell-Cell (CC) relation.

— o203
0 p o
ol 2
p3
P o
ol 2

p3

Fig.4. A fragment of the SMC of Figure 3 and CC relations involving simplex

o. At edge pipa, relation co-CCy and co-CCs both give simplex oq; relations
counter-CCy and counter-CCs are not defined. At edge paps no CC relation 1s
defined. At edge psp1, relation co-CCy 1s not defined, relation counter-CCy gives

os; relation co-CCqy gives o9 and counter-CCy 18 not defined.

Since not all cells sharing a (k — 1)-facet in the SMC can coexist in a cell

complex extracted from it, we specialize the CC relation further into four differ-

ent relations that will be used in the context of data structures and algorithms

discussed in the following (see also Figure 4). Given two cells oy and o9 that
share a (k — 1)-facet o:

1.

o1 and o9 are co-CCy at ¢” if and only if o1, 05 have been removed by the
same update (i.e., they label either the same arc or two arcs entering the same
node);

. oy and o5 are co-CCy at ¢” if and only if o1, 05 have been created by the

same update (i.e., they label either the same arc or two arcs leaving the same
node);

a5 is counter-C'Ch 5 to oy at o’ if and only if, oy is created by the update
that removes o (i.e., the arc containing oy and that containing o5 enter and
leave the same node, respectively);
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4. o9 18 counter-CCs 1 to oy at o' if and only if &3 is removed by the update
that creates o (i.e., the arc containing ¢y and that containing ¢y leave and
enter the same node, respectively).

Relations co-CCy and counter-CCy 5 are mutually exclusive: a k-simplex can-
not have both a co-CCy, and a counter-CCj 5 cell at the same (k — 1)-facet. The
same property holds for relations co-CCs and counter-CCy 1. The above four re-
lations do not capture all possible CC relations among cells in an SMC, but they
are sufficient to support efficient reconstruction algorithms, as explained in the
following.

Relations CV and CC, defined in the context of a mesh extracted from an
SMC by the algorithms described in Section 3, also characterize the winged data
structure. Now, let us assume that we want to encode our output mesh through
such a data structure. We have three options:

1. Adjacency reconstruction as a post-processing step: the extraction algorithm
returns just a collection of cells and vertices, together with the CV relation;
pairs of adjacent (CC) cells in the output mesh are found through a sorting
process. This takes O(m(k + 1) log(m(k + 1))) time, where m is the number
of cells in the mesh, and k is the dimension of the complex.

2. Incremental adjacency update: the pairs of adjacent cells in the output mesh

are determined and updated while traversing the SMC, encoded with a data
structure that maintains the four relations co-CCy, co-CCs, counter-CCy 5
and counter-CCo ;.
In the extraction algorithms, when the current front is advanced after a
node, the pairs of mutually adjacent new cells introduced in the current mesh
are determined by looking at co-CCs relations in the SMC; the adjacency
relations involving a new cell, and a cell that was already present in the
output mesh, are determined by using relation counter-CCs ; and adjacency
relations of the old cells replaced by the update. Symmetrically, when the
current. front. is moved bhefore a node, relations co-CC; and counter-CCy 5
permit updating adjacency relations in the current mesh. The total time is
linear in the number of cells swept from one side to the other of the front.

3. Incremental adjacency reconstruction: same as approach 2, but without en-

coding CC relations of the SMC.
Tn this case, when sweeping a front through a node (either forward or back-
ward), a process of adjacency reconstruction similar to that used in approach
1 is applied, locally to the part of the current complex formed by the new
cells introduced in the current mesh, and the cells adjacent to those deleted
by the update operation. The time required is O(Nsuweep log M), where 1y eep
is the number of swept cells, and M 1s the maximum number of cells removed
and created by the update contained in a swept node.

5 Data Structures

Fncoding an SMC introduces some overhead with respect to maintaining just
the mesh at the highest possible resolution that can be extracted from it. This 1s
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indeed the cost of the mechanism for handling multiresolution. However, we can
trade-off between the space requirements of a data structure and the performance
of the query algorithms that work on it.

From the discussion of previous sections, it follows that basic requirements
for a data structure encoding an SMC are to support selective refinement. (as
outlined in Section 3), and to support the extraction of application-dependent,
attributes related to vertices and cells. Moreover, a data structure should support
the efficient reconstruction of spatial relationships of an output mesh, for those
applications that require it.

In the following subsections, we describe and compare some alternative data
structures that have different costs and performances. Those described in Sec-
tions 5.1 and 5.2 can be used for any SMC, while those described in Section 5.3
can be used only for a class of SMCs built through specific update operations.

5.1 Explicit data structures

An explicit data structure directly represents the structure of the DAG describing
an SMC. Tt is characterized by the following information:

For each vertex, its coordinates.

For each cell: the Cell-Vertex and the Cell-Arc relations, plus possibly a
subset, of Cell-Cell relations (as described below).

For each node: the Node-Arc relation.

For each arc: the Arc-Node relation, and the Arc-Cell relation.

Depending on the specific application, additional information may be attached
to vertices and/or cells (e.g., approximation errors for simplices). Here, we do
not take into account such extra information.

Assuming that any piece of information takes one unit, the space required
by this data structure, except for adjacency relations and attributes, is equal to
dv + (k + 3)s + 4a, where v, s and a denote the number of vertices, cells, arcs
in the SMC, respectively. Note that 4a is the cost of storing the NA plus the AN
relations (i.e., the DAG structure), while 2s is the cost of storing the CA and AC
relations, i.e. information connecting the DAG and the cells of the SMC.

We consider three variants of adjacency information that can be stored for
each cell o:

Full-adjacency: all four adjacency relations are maintained: co-CCy, co-CCo,
counter-CCy 5 and counter-CCs 1. For each (k — 1)-facet of &, co-CCy and
counter-CCy 5 are stored in the same physical link, since they cannot be both
defined; similarily, co-CC4y and counter-CCs ¢ are stored in the same physical
link. Thus, we have 2(k + 1) links for each simplex.

Half-adjacency: only relations co-CCy and counter-CCy 1 are stored, by using
the same physical link for each edge e of &, thus requiring (k£ + 1) links.
Zero-adjacency: no adjacency relation is stored.
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The version with full-adjacency can support incremental adjacency update
(see approach 2 in Section 4). The version with half-adjacency can support in-
cremental adjacency update only when advancing the front after a node. With
zero-adjacency, adjacency reconstruction must be performed, either as a post-
processing (approach 1), or incrementally (approach 3).

18 |
16 |
14 |
12 |
1.0 | approach 3
08 |
06 1
04 |
02 |
0.0

approach 1

no adj

0 éOOO .lI.ZOOO 5.8000 ‘24000

Fig.5. Query times with adjacency reconstruction on a two-dimensional SM(C
using approach 1 and 3; the dotted curve represents query time without adjacency
generation. The horizontal axis reports the number of triangles in the output
mesh, the vertical axis execution times (in seconds).

Figure b compares the performance of query algorithms on the zero-adjacency
data structure without adjacency generation, and with adjacencies reconstructed
through approaches 1 and 3. Adjacency reconstruction increases query times of
almost a factor of ten. Therefore, 1t seems desirable that adjacency information
are maintained in the SMC data structure whenever they are necessary in the
output mesh, provided that the additional storage cost can be sustained.

5.2 A Data Structure Based on Adjacency Relations

In this section, we describe a data structure that represents the partial order
which defines the SMC implicitly, i.e., without encoding the DAG, but only us-
ing adjacency relations. The data structure stores just vertices and cells, and it
maintains the following information:

For each vertex: its coordinates.
For each cell: the Cell-Vertex relation, and the four Cell-Cell relations, (using
2(k + 1) links as explained in Section 5.1).

The space required is dv + 3(k + 1)s.
Given a cell o, removed by an update U, all other cells removed by U are
found through co-CCy starting at . Among such cells, a cell ¢” is found which

www.manaraa.com



has at least one counter-CCs ; simplex ¢”. Finally, starting from ¢” (which is a
cell created by U), all remaining cells created by U are found by using relation co-
CCy. These properties allow us to update the current mesh after any movement
of the current front.

The size of the adjacency-based data structure is always larger than that of
the explicit structure with zero-adjacency, while it is comparable with that of the
explicit data structure encoding some adjacency. Note that the space needed to
store adjacency relations tends to explode when the dimension &k of the model
increases. Implementing query algorithms on the adjacency-based structure is
more involved than on the explicit structure, and it requires maintaining lar-
ger temporary structures for encoding the internal state (see [11] for details).
Therefore, this data structure should be preferred over to the explicit ones only
if adjacency relations are fundamental in the output structure, and the dimension
of the problem is low. However, the performance of the query algorithms is likely
to degrade with respect to the case of explicit data structures. Storage costs for
k = 2,3 are compared in Table 1.

k=d=2 k=d=3
structure space structure space
explicit (zero-adj)|2v + bs + 4a | |explicit (zero-adj)|3v + 6s + 4a
explicit (half-adj)|2v + 8s + 4a | |explicit (half-adj) [3v + 10s + 4a
explicit (full-adj) |2v + 11s + 4a| |explicit (full-adj) [3v + 145 + 4a
adj-based 2v + 9s adj-based v+ 12s

Table 1. Space requirements of the explicit and the adjacency-based data struc-
tures for k = 2, 3.

5.3 Compressed Data Structures

Much of the cost of data structures presented in the previous sections 1s due to
the explicit representation of the cells and of the cell-oriented relations in the
SMC. Indeed, the total number of cells is usually quite larger than the number
of vertices, arcs, and nodes involved in the model, and relations among cells
and vertices are expensive to maintain: for instance, a cell needs k + 1 vertex
references for representing relation CV.

In some cases, the structure of every update exhibits a specific pattern, which
allows us to compress information by representing cells implicitly. Examples of
update patterns commonly used in building TLOD models for surfaces are: ver-
ter insertion, which is performed by inserting a new vertex and retriangulating
its surrounding polytope consequently; and verter split, which is performed by
expanding a vertex into an edge and warping its surrounding cells consequently.
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Such update patterns are well defined in any dimension d, and they are depicted
in Figure 6 for the two-dimensional case.

%) WX

VERTEX INSERTION VERTEX SPLIT

Fig. 6. Two types of update patterns that allow the design of compressed data
structures for an MC. The shaded triangles are those involved in the update.

Since each update I/ exhibits a predefined pattern, the set of cells it introduces
can be encoded by storing just a few parameters within U, that are sufficient to
describe how the current complex must be modified when sweeping the front,
either forward or backward, through /. The type and number of parameters de-
pend on the specific type of update for which a certain compressed data structure
18 designed.

The generic scheme for a compressed data structure encodes just the ver-
tices, nodes, and arcs of an SMC. For vertices, 1t stores the same information
as the standard explicit structure; for nodes and arcs 1t encodes the following
information:

For each node U: the Node-Arc relation, plus an implicit description of the
cells defining the update described by U, i.e., an implict encoding of the
combination of Node-Cell and Cell-Vertex relations.

For each arc: the Arc-Node relation.

The space required (except for the implicit encoding of the NC relation com-
bined with the CV one) is equal to dv + 4a.

Note that, since cells do not exist as individual entities, attribute informa-
tion for them cannot be encoded explicitly. This means that, while the exact
geometry of cells can be obtained through suitable mechanisms associated with
update parameters, their attributes can only be approximated through informa-
tion associated with nodes. In other words, attributes on a node U/ summarize
attributes of the whole group of cells associated with it. Tn this sense, such a
structure is lossy, because 1t cannot, discriminate between attributes of different
cells in the context of the same node. Since the evaluation of the resolution filter
may depend on cell attributes, because of the approximation, a given cell & may
result unfeasible even if it was feasible, or viceversa. This fact may cause the ex-
traction of a mesh that is either over- or under-refined with respect to the input
requirements.

Another subtle issue, which affects the performance of the extraction al-
gorithms, is the lack of information on the update that must be applied to refine
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the mesh at a given cell. This is due to the fact that cells are associated with
nodes, rather than with arcs. When sweeping the current front after a node U,
the state of the current mesh, and the update information stored in U/, allow us
to determine which cells are removed, and which cells are created by U. All new
cells are tagged with U as their creator. Let o be a cell introduced by U. If 7 1is
not feasible, then we should advance the front after the node U’ that removes o.
Unfortunately, the data structure does not provide information on which child of
IJ removes o. In order to avoid cumbersome geometric tests to find UJ/, we adopt
a conservative approach that advances the front after all children of /. However,
such an approach may lead to over-refine the extracted mesh with respect to the
output of the same query answered on a general data structure. Similar problems
arise when sweeping the current front hefore a node. See [11] for further details.

In the following, we describe in more detail two specific data structures for
the case of vertex insertion. The first data structure applies to SMCs in arbitrary
dimension d, while the second structure is specific for two-dimensional SMCs.
Similar data structures for the case of vertex split can also be obtained, by
combining the ideas presented here with the mechanism described in [8] for a
single update.

A Structure for Delaunay SMCs We present a compressed structure de-
signed for d-dimensional SMCs in RY, such as the ones used to represent the
domain of scalar fields (e.g., for d = 2, the domain of terrains, or of paramet-
ric surfaces), based on Delaunay simplicial complexes. A simplicial complex is
called a Delaunay stmplicial complex if the circumsphere of any of its cells does
not contain vertices in its interior. In two dimensions, Delaunay triangulations
are widely used in terrain modeling because of the regular shape of their triangles
and since efficient algorithms are available to compute them.

In a Delaunay SMC, the initial simplicial complex 1s a Delaunay one, and
every other node U/ represents the insertion of a new vertex in a Delaunay com-
plex. Thus, every extracted complex is a Delaunay complex.

For a set of points in general positions (no d 4 2 points are co-spherical), the
Delaunay complex is unique; thus, a Delaunay complex is completely determined
by the set of its vertices, and the update due to the insertion of a new vertex is
completely determined by the vertex being inserted. The data structure encodes
cells in the following way:

at the root, the initial simplicial complex is encoded in the winged data
structure;
for any other node U, the new vertex inserted by U is encoded (this defines an
implicit description of the combination of the Node-Cell and the Cell-Vertex
relations).

The cost of storing the implicit description is just equal to v. Tt can be
reduced to zero by storing vertices directly inside nodes. The total cost of this
data structure is equal to dv + 4a, by considering the space required by the two

DAG relations (i.e., NA and AN).
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Given a front on the SMC, the vertex stored in a node U is sufficient to
determine how the corresponding mesh must be updated when sweeping the
front through U, either forward or backward. This operation reduces to vertex
insertion or deletion in a Delaunay simplicial complex.

This compression scheme is easily implemented for 2-dimensional SMCs based
on vertex insertions in a Delaunay triangulation. For higher values of the dimen-
sion d, the algorithms necessary to update the current Delaunay complex become
more difficult [6]. Deleting a point, from a Delaunay simplicial complex in three
or higher dimensions, as required when sweeping backward the front, 1s not easy;
we are not aware of any existing implemented algorithm for such task, even in
the three-dimensional case.

A Structure Based on Edge Flips This compression scheme can encode
any two-dimensional SMC where nodes represent vertex insertions in a triangle
mesh. Tt is efficient for SMCs where the number of triangles created by each
update 1s bounded by a small constant b. The basic idea 1s that, for each node
U, the corresponding update (which transforms a triangle mesh not containing a
vertex p into one containing p) can be performed by first inserting p in a greedy
way and then performing a sequence of edge flips. This process, illustrated in
Figure 7, defines an operational and implicit way of encoding the combination of
the Node-Cell and Cell-Vertex relations.

Fig. 7. Performing an update (insertion of a vertex p) through triangle split and
edge flips. At each flip, the pair 1,09 of triangle sharing the flipped edge 1s
indicated.

First, p is inserted by splitting one of the triangles removed by p, that we call
the reference triangle for p. This creates three triangles incident at p. Starting
from such initial configuration, a sequence of edge flips is performed. Each edge
flip deletes a triangle oy incident at p, and the triangle oy adjacent to oy along
the edge opposite to p, and replaces them with two new triangles incident at p,
by flipping the edge common to o1 and 5. At the end, p has a fan of incident
triangles which are exactly those introduced by update U.

The update represented by a node U7 is fully described by the new vertex p, a
reference triangle o, and a sequence of edge flips. Edge flips are represented by
numerical codes. Tet us consider an intermediate situation where a flip replaces
the j-th incident triangle of p in a radial order around p (e.g., in counterclockwise
order starting from the topmost triangle): then we use the number j to code the
flip. The code of the first flip is in the range 0...2 since, at the beginning, there
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are only three triangles incident at p. Since each edge flip increases the number
of these triangles by one unit, the code for the j-th flipisin 0...j + 1. The total
number of edge flips for a vertex p i1s £ — 3, where ¢ is the number of triangles
created by the update /. Since # < b the flip sequence consists of at most b — 3
integers, where the j-th integer is in the range 0...j+ 1. Therefore, the sequence
of flips can be packed in a flip code of Z?;?(]ogQ(j +2)) = Zf;; (logs (1)) =
log,((b— 1)!) — 1 bits.

The reference triangle o for p is a triangle created by some update U’ that
18 a parent of I/ in the DAG. Thus, to uniquely define &, 1t is sufficient to give
a reference to /' and an integer number identifying one of the triangles incident
in the central vertex of U’ according to a radial order (e.g., counterclockwise).
Conventionally, we organize the data structure in such a way that parent U’ is
the first parent stored for UU; thus, there is no need to encode it explicitly. The
number identifying ¢ is in the range 0...6 — 1. We can pack the flip code and
the index of o together in log,(b!) — 1 bits. The space required for the implicit
encoding of cells in this scheme is v((log,(b!) — 1)) bits.

Fxtending this compression scheme to higher dimensions is a non-trivial task.
Edelsbrunner and Shah [6] showed that insertion of a point in a Delaunay sim-
plicial complex reduces to a sequence of flips of (k — 1)-facets. This result could
suggest, that a coding based on flips may be possible for k-dimensional Delaunay
SMCs built through incremental refinement. However, in k-dimensions it is not
clear how the (k — 1)-facets incident at a vertex could be sorted in such a way to
allow the definition of a compact flip code. Moreover, it 1s difficult to guarantee
a bounded degree of vertices in a k-dimensional simplicial mesh and, in any case,
the number of flips is not guaranteed to be linear in the degree of the inserted
vertex.

Discussion We have compared the sizes of the two compressed structures out-
lined above with the size of the explicit data structure, for a number of two-
dimensional SMCs. On the average, the space occupied by the Delaninay com-
pressed structure, and by the one based on edge flips, is about 1/4 and 1/3,
respectively, of the space needed by the explicit structure without adjacencies.

Tt 1s interesting to compare the performance of query algorithms on an SMC
when 1t is encoded through an explicit data structure, or through a compressed
one, and the quality of the triangle meshes produced by such algorithms. Query
algorithms provide the same meshes for the same input parameters with all com-
pressed data structures, but the performances vary depending on the amount of
work needed for reconstructing triangles with the specific structure.

Our experiments have shown that, if the given resolution filter does not refer
to triangle attributes (e.g., it depends just on the geometry and location of tri-
angles in space), the mesh extracted by a query algorithm using a compressed
or an explicit structure are the same. On the contrary, if the resolution filter uses
triangle attributes, then the resulting mesh may be quite different due to the
approximation of such attributes in the compressed structures.
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We have experimented with resolution filters that refer to approximation er-
rors associated with triangles of an SMC. The resolution filter imposes an upper
bound on the error of triangles that can be accepted in the solution of a query. In
the compressed structure, a single error i1s associated with each node U/, defined
as the maximum approximation error of the triangles created by /. When such
triangles are reconstructed in the current mesh, they receive the approximation
error of U/, which over-estimates their true error, hence forcing the extraction
algorithm to over-refine the solution of the query. In this case, meshes extracted
from the compressed SMC may be twice as large as those obtained from the
explicit structure.

The performance of query algortihms has been monitored just for the explicit
structure, and for the Delaunay-based compressed structure. The compressed
structure based on edge flips is still under implementation. The explicit structure
supports the extraction of triangle meshes formed by about 10* cells from SMCs
containing about 10 cells, in real-time. Query algorithms on the Delaumay-based
compressed structure are much slower. The increase in execution times is due
to the on-line computation of a Delaunay triangulation. We expect better results
with the structure based on edge flips.

6 Concluding Remarks

We have presented several alternative data structures for encoding a Simplicial
Multi-Complex.

General-purpose data structures are characterized by encoding different sub-
sets of the basic relations between the elements of an SMC. Different alternatives
can be selected in order to adapt to the needs of a specific task, and to trade-off
between space and performance. The SMC has been extended to cell complexes
in [11]. However, the main difficulty in extending general-purpose data structures
to general cell complexes lies in the intrinsic complexity of data structures for
cell complexes, compared with those for simplicial complexes.

Compressed data structures have been defined for SMCs in the two-dimensional
case, 1 which only the DAG structure is stored, and triangles are encoded
through an implict rule. Only the structure for Delaunay SMC extends to three or
more dimensions easily, even if the problem of deleting a point from a Delaunay
mesh in three or higher dimension is solved only from a theoretical point of
view. We plan to investigate more general compressed structures for higher-
dimensional SMCs in the future.

Compressed data structures can be much more compact than general-purpose
ones, but, on the other hand, the performance of extraction algorithms can be
degraded severely, because of additional work necessary to reconstruct the struc-
ture of meshes. In the two-dimensional case, it should be remarked that, while the
Delaunay-based data structure 1s more compact than the one based on edge flips,
the performance of the extraction algorithms is severely affected by numerical
computation necessary to update the Delaunay triangulation.
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Based on the data structures presented here, we have developed an object-
oriented library for building, manipulating and querying two-dimensional SMCs,
which has been designed as an open-ended tool for developing applications that
require advanced T.OD features [11]. Tn the current state of development, the
library implements both the explicit and the Delaunay-based data structures, the
algorithms described in [11], algorithms for building an SMC both for terrains
and free form surfaces, application-dependent operations implemented on top of
the query operations, mainly for GIS applications (interactive terrain visualiz-
ation, contour map extraction, visibility computations, etc.). We are currently
implementing the structure based on edge flips and a version of the library for
dealing with three-dimensional SMCs for representing 3D scalar fields at variable
resolution.

An important issue in any application which deals with large data sets is
designing effective strategies to use secondary storage. To this aim, we have been
studying data structures for handling SMCs on secondary storage. In [11], a disk-
based data structure for two-dimensional SMCs is proposed in the context of a
terrain modeling application. Such a structure organizes a set of SMCs, each of
which describes a subset of a larger area. Individual SMCs reside on separate
files, and two or more of them (i.e., the ones contributing to represent, a relevant
area of space) can be merged into a single SMC when loaded into main memory to
answer a query. Future work involves defining and implementing query algorithms
having a direct access to large SMCs resident on disk.
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