
www.manaraa.com

Data Structures for Simplicial Multi-ComplexesLeila De Floriani, Paola Magillo, and Enrico PuppoDipartimento di Informatica e Scienze dell'Informazione { Universit�a di GenovaVia Dodecaneso, 35, 16146 Genova, ITALYfdeflo,magillo,puppog@disi.unige.itAbstract. The Simplicial Multi-Complex (SMC) is a general multiresol-ution model for representing k-dimensional spatial objects through sim-plicial complexes. An SMC integrates several alternative representationsof an object and o�ers simple methods for handling representations atvariable resolution e�ciently, thus providing a basis for the developmentof applications that need to manage the level-of-detail of complex objects.In this paper, we present general query operations on such models, wedescribe and classify alternative data structures for encoding an SMC,and we discuss the cost and performance of such structures.1 IntroductionGeometric cell complexes (meshes) have a well-established role as discrete mod-els of continuous domains and spatial objects in a variety of application �elds,including Geographic Information Systems (GISs), Computer Aided Design, vir-tual reality, scienti�c visualization, etc. In particular, simplicial complexes (e.g.,triangle and tetrahedra meshes) o�er advantageous features such as adaptivityto the shape of the entity, and ease of manipulation.The accuracy of the representation achieved by a discrete geometric modelis somehow related to its resolution, i.e., to the relative size and number of itscells. At the state-of-the-art, while the availability of data sets of larger andlarger size allows building models at higher and higher resolution, the computingpower and transmission bandwidth of networks are still insu�cient to managesuch models at their full resolution. The need to trade-o� between accuracy ofrepresentation, and time and space constraints imposed by the applications hasmotivated a burst of research on Level-of-Detail (LOD). The general idea behindLOD can be summarized as: always use the best resolution you need { or youcan a�ord { and never use more than that. In order to apply this principle,a mechanism is necessary, which can \administrate" resolution, by adapting amesh to the needs of an application, possibly varying its resolution over di�erentareas of the entity represented.A number of di�erent LOD models have been proposed in the literature. Mostof them have been developed for applications to terrain modeling in GISs (see,for instance, [1,4, 9]) and to surface representation in computer graphics andvirtual reality applications (see, for instance, [10,8, 15, 7]), and they are strongly



www.manaraa.com

characterized by the data structures and optimization techniques they adopt aswell as custom tailored to perform speci�c operations, and to work on speci�carchitectures. In this scenario, developers who would like to include LOD featuresin their applications are forced to implement their own models and mechanisms.On the other hand, a wide range of potential applications for LOD have beendevised, which require a common basis of operations (see, e.g., [3]). Therefore,it seems desirable that the LOD technology is brought to a more mature stage,which allows developers to use it through a common interface, without the needto care about many details.In our previous work, we have developed a general model, called a SimplicialMulti-Complex (SMC), that can capture all LOD models based on simplicialcomplexes as special cases [13, 5, 14]. Based on such model, we have built systemsfor managing the level of detail in terrains [2], and in free-form surfaces [3], andwe are currently developing an application in volume visualization.In this paper, we consider general operations that can be performed on LODmodels and propose an analysis of cost and performance of their encoding datastructures. Trade-o� between cost and performance is a key issue to make theLOD technology suitable to a wide spectrum of applications and architectures inorder to achieve a more homogeneous and user-transparent use of LOD.The Simplicial Multi-Complex is briey described in Section 2, and generalquery techniques on such model are outlined in Section 3. In Section 4, we ana-lyze the spatial relations among entities in the SMC, which are fundamental tosupport queries and traversal algorithms. In Section 5, we analyze di�erent datastructures to encode SMCs in the general case, as well as in special cases, and wediscuss both the cost of such data structures, and their performance in support-ing the extraction of spatial relations. In Section 6, we present some concludingremarks.2 Simplicial Multi-ComplexesIn this section, we briey review the main concepts about the Simplicial Multi-Complex, a dimension-independent multiresolution simplicial model which ex-tends the Multi-Triangulation presented in [13,5, 14]. For the sake of brevity,this subject is treated informally here. For a formal treatment and details see[11].In the remainder of the paper, we denote with k and d two integer numberssuch that 0 < k � d. A k-dimensional simplex � is the locus of points that can beexpressed as the convex combination of k+ 1 a�nely independent points in IRd,called the vertices of �. Any simplex with vertices at a subset of the vertices of� is called a facet of �. A (regular) k-dimensional simplicial complex in IEd is a�nite set � of k-simplices such that, for any pair of distinct simplices �1; �2 2 �,either �1 and �2 are disjoint, or their intersection is the set of facets shared by�1 and �2. In what follows, a k-simplex will be always called a cell, and we willdeal only with complexes whose domain is a manifold (also called subdividedmanifolds).



www.manaraa.com

2

5

4

3

1

Fig. 1. A sequence of �ve updates (numbered 1: : :5) progressively re�ning aninitial coarse triangle mesh. The area a�ected by each update is shaded.
(a) (b) (c)Fig. 2. Three meshes extracted from a two-dimensional SMC representing aterrain (top view). (a) The triangulation has the highest possible resolution insidea rectangular window, and the lowest possible resolution outside it. (b) Resolutioninside a view frustum (wedge) is decreasing with the distance from its focus point,while it is arbitrarily low outside it. (c) Resolution is high only in the proximityof a polyline.



www.manaraa.com

The intuitive idea behind a Simplicial Multi-Complex (SMC) is the following:consider a process that starts with a coarse simplicial complex and progressivelyre�nes it by performing a sequence of local updates (see Figure 1). Each localupdate replaces a group of cells with another group of cells at higher resolution.An update U2 in the sequence directly depends on another update U1 precedingit if U2 removes some cells introduced with U1. The dependency relation betweenupdates is de�ned as the transitive closure of the direct dependency relation.Only updates that depend on each other need to be performed in the given order;mutually independent updates can be performed in arbitary order. For instance,in the example of Figure 1, updates 3 and 4 are mutually independent, whileupdate 5 depends on both; thus, we must perform update 4 �rst, then followedby 3 and 5.An SMC abstracts from the totally ordered sequence by encoding a partialorder describing the mutual dependencies between pairs of updates. Updatesforming any subset closed with respect to the partial order, when performed ina consistent sequence, generate a valid simplicial complex. Thus, it is possibleto perform more updates in some areas, and fewer updates elsewhere, henceobtaining a complex whose resolution is variable in space. Such an operation isknown as selective re�nement, and it is at the basis of LOD management. A fewresults of selective re�nement from an SMC representing a terrain are shown inFigure 2.An SMC is described by a directed acyclic graph (DAG). Each update isa node of the DAG, while the arcs correspond to direct dependencies betweenupdates. Each arc is labeled with the collection of all cells of its source node thatare removed by its destination node. For convenience, we introduce two furthernodes: a root corresponding to the update creating the initial coarse complex,which is connected with an arc to each update that removes some if its cells; anda drain, corresponding to the �nal deletion of the complex obtained by performingall updates, which is connected with an arc from each update that creates someof its cells. Also such arcs are labeled by cells in a consistent way. Figure 3 showsthe SMC corresponding to the collection of updates described in Figure 1.A front of an SMC is a set of arcs containing exactly one arc on each directedpath from the root (see Figure 3). Since the DAG encodes a partial order, we saythat a node is before a front if it can be reached from the root without traversingany arc of the front; otherwise the node is said to be after the front. Nodes lyingbefore a front de�ne a consistent set of updates, and the corresponding simplicialcomplex is formed by all cells labeling the arcs of the front [11]. By sweeping afront through the DAG, we obtain a wide range of complexes, each characterizedby a di�erent resolution, possibly variable in space.In the applications, often an SMC is enriched with attribute information asso-ciated with its cells. Examples are approximation errors (measuring the distanceof a cell from the object portion it approximates), colors, material properties,etc.



www.manaraa.com

1

2

3

5

4

0

6

(a)

(b)Fig. 3. (a) The SMC built over the partially ordered set of mesh updates ofFigure 1. Each node represents an update, and it shows the two sets of simplicesremoved and created in the update. Each arc represents the dependency betweentwo updates, and it is labelled by the triangles created in the �rst update, whichare removed in the second update. A front on the SMC contains the arcs inter-sected by the thick dashed line; nodes lying before the front are highlighted. (b)The triangle mesh associated with the front.



www.manaraa.com

3 A Fundamental Query on an SMCSince an SMC provides several descriptions of a spatial object, a basic queryoperation consists of selecting a complex which represents the object accordingto some user-de�ned resolution requirements. This basic query provides a naturalsupport to variable resolution in many operations, such as:{ point location, i.e., �nding the cell that contains a given point and such thatits resolution meets some user-de�ned requirements;{ windowing, i.e., �nding a complex, that represents the portion of the objectlying inside a box, at a user-de�ned resolution;{ ray casting, i.e., �nding the cells that intersect a given ray at a user-de�nedresolution;{ perspective rendering: in this case, a complex is generated which representsthe portion of the object lying inside the view frustum, and whose resolutionis higher near the viewpoint and decreases with the distance from it;{ cut, i.e., sectioning with a hyperplane: the section is computed by �rst retriev-ing the cells that intersect the given hyperplane and have a speci�c resolution.In the most general case, resolution requirements are expressed through aresolution �lter, which is a user-de�ned function R that assigns to each cell � ofthe SMC a real value R(�). Intuitively, a resolution �lter measures the \signeddi�erence" between the resolution of a cell and that required by the application:R(�) > 0 means that the resolution of � is not su�cient; R(�) < 0 means thatthe resolution of � is higher than necessary. A cell such that R(�) � 0 is saidfeasible.For example, the meshes depicted in Figure 2 satisfy the following resolution�lters: in (a), R is negative for all cells outside the window, zero for all cellsinside it that are at the highest resolution, and positive for all others; in (b), Ris negative for all cells outside the view frustum, while for a cell � inside it, Ris decreasing with resolution of �, and with its distance from the focus point;in (c), R is negative for all cells not intersecting the polyline, zero for all cellsintersecting it that are at the highest resolution, and positive for all others.The basic query on an SMC consists of retrieving the simplicial complex ofminimum size (i.e., composed by the smallest number of cells) which satis�esa given resolution �lter R (i.e., such that all its cells are feasible with respectto R). Variants of this query are also described in [11]. The basic query can beeasily combined with a culling mechanism, which extracts only the subcomplexintersecting a given Region Of Interest (ROI). This localized query permits toimplement operations like point location, windowing, etc.Algorithms for mesh extraction [13, 3, 14, 11] sweep a front through the DAG,until an associated complex formed by feasible cells is found. Minimum size isguaranteed by a front that lies as close as possible to the root of the SMC. Inthe case of a localized query, spatial culling based on a ROI is incorporatedin the DAG traversal, hence using the structure of the SMC also as a sort ofspatial index. The key operations used by extraction algorithms consist in eitheradvancing the front after a node, when the resolution of the complex over that



www.manaraa.com

area is not su�cient, or moving it before a node when the resolution over thatarea is higher than required.The key issues that have impact on the performance of such algorithms are:the evaluation of the resolution function, which is application-dependent; and theevaluation of mutual relations that occur among di�erent entities of the SMC. Thecost of computing such relations is highly dependent on the amount of informationstored in the data structure.4 Relations in a Simplicial Multi-ComplexIn some applications, e.g., in computer graphics, it is often su�cient to representa simplicial complex by the collection of its cells, where each cell is described byits vertices and its attributes. In other applications, e.g., in GIS, in CAD, or inscienti�c visualization, topological relations among vertices and cells of the meshmust be maintained as well. A common choice is the winged data structure, whichstores, for each cell, the (k + 1) cells adjacent to it along its (k � 1)-facets [12].Building the winged data structure for the mesh produced as the result of a queryon the SMC can be more or less expensive, depending on the data structure usedto encode the SMC.In the following, we discuss the relations among the elements of an SMC,which are needed in the traversal algorithms, and in building the winged datastructure for the output mesh.There are essentially three kinds of relations in an SMC:{ Relations on the DAG: they de�ne the structure of the DAG describing theSMC by relating its nodes and arcs.{ Relations between the DAG and the cells of the SMC: they de�ne the con-nections between the elements of the DAG (arcs and nodes) and the cellsforming the SMC; in the de�nition given in Section 2, such a connection isde�ned by labeling each arc of the DAG with the cells created by its sourcenode that are removed by its destination node.{ Relations between the simplices of the SMC: they de�ne the relations amongvertices and cells in the SMC.The relations on the DAG are the standard relations in a directed graph:Node-Arc (NA), which associates with a node its incoming and its outgoing arcs;and Arc-Node (AN), which associates with an arc its source and its destination.The relations between the DAG and the cells of the SMC can be de�ned asfollows:{ Arc-Cell (AC) relation, which associates with an arc of the DAG the collectionof the cells labeling it.{ Cell-Arc (CA) relation, which associates with a cell � of the SMC the arc ofthe DAG whose label contains �.{ Node-Cell (NC) relation, which associates with a node U the cells createdand deleted by the corresponding update.



www.manaraa.com

{ Cell-Node (CN) relation, which associates with a cell � the node U introdu-cing � in its corresponding update, and the node U 0 removing �.The relations between the simplices in an SMC we are interested in are:{ the relation between a cell and its vertices, that we call Cell-Vertex (CV)relation;{ the adjacency relation between two cells, which share a (k�1)-facet, that wecall a Cell-Cell (CC) relation.
4

0

σ

σ

σ

σ1

σ1

σ1

σ2

σ3

p3

p2
p3

p1

p2

p3

p2

p3

p1

p1 p1Fig. 4. A fragment of the SMC of Figure 3 and CC relations involving simplex�. At edge p1p2, relation co-CC1 and co-CC2 both give simplex �1; relationscounter-CC1 and counter-CC2 are not de�ned. At edge p2p3 no CC relation isde�ned. At edge p3p1, relation co-CC1 is not de�ned, relation counter-CC1 gives�3; relation co-CC2 gives �2 and counter-CC2 is not de�ned.Since not all cells sharing a (k � 1)-facet in the SMC can coexist in a cellcomplex extracted from it, we specialize the CC relation further into four di�er-ent relations that will be used in the context of data structures and algorithmsdiscussed in the following (see also Figure 4). Given two cells �1 and �2 thatshare a (k � 1)-facet �00:1. �1 and �2 are co-CC1 at �00 if and only if �1; �2 have been removed by thesame update (i.e., they label either the same arc or two arcs entering the samenode);2. �1 and �2 are co-CC2 at �00 if and only if �1; �2 have been created by thesame update (i.e., they label either the same arc or two arcs leaving the samenode);3. �2 is counter-CC1;2 to �1 at �00 if and only if, �2 is created by the updatethat removes �1 (i.e., the arc containing �1 and that containing �2 enter andleave the same node, respectively);



www.manaraa.com

4. �2 is counter-CC2;1 to �1 at �00 if and only if �2 is removed by the updatethat creates �1 (i.e., the arc containing �1 and that containing �2 leave andenter the same node, respectively).Relations co-CC1 and counter-CC1;2 are mutually exclusive: a k-simplex can-not have both a co-CC1, and a counter-CC1;2 cell at the same (k� 1)-facet. Thesame property holds for relations co-CC2 and counter-CC2;1. The above four re-lations do not capture all possible CC relations among cells in an SMC, but theyare su�cient to support e�cient reconstruction algorithms, as explained in thefollowing.Relations CV and CC, de�ned in the context of a mesh extracted from anSMC by the algorithms described in Section 3, also characterize the winged datastructure. Now, let us assume that we want to encode our output mesh throughsuch a data structure. We have three options:1. Adjacency reconstruction as a post-processing step: the extraction algorithmreturns just a collection of cells and vertices, together with the CV relation;pairs of adjacent (CC) cells in the output mesh are found through a sortingprocess. This takes O(m(k + 1) log(m(k + 1))) time, where m is the numberof cells in the mesh, and k is the dimension of the complex.2. Incremental adjacency update: the pairs of adjacent cells in the output meshare determined and updated while traversing the SMC, encoded with a datastructure that maintains the four relations co-CC1, co-CC2, counter-CC1;2and counter-CC2;1.In the extraction algorithms, when the current front is advanced after anode, the pairs of mutually adjacent new cells introduced in the current meshare determined by looking at co-CC2 relations in the SMC; the adjacencyrelations involving a new cell, and a cell that was already present in theoutput mesh, are determined by using relation counter-CC2;1 and adjacencyrelations of the old cells replaced by the update. Symmetrically, when thecurrent front is moved before a node, relations co-CC1 and counter-CC1;2permit updating adjacency relations in the current mesh. The total time islinear in the number of cells swept from one side to the other of the front.3. Incremental adjacency reconstruction: same as approach 2, but without en-coding CC relations of the SMC.In this case, when sweeping a front through a node (either forward or back-ward), a process of adjacency reconstruction similar to that used in approach1 is applied, locally to the part of the current complex formed by the newcells introduced in the current mesh, and the cells adjacent to those deletedby the update operation. The time required is O(nsweep logM ), where nsweepis the number of swept cells, andM is the maximumnumber of cells removedand created by the update contained in a swept node.5 Data StructuresEncoding an SMC introduces some overhead with respect to maintaining justthe mesh at the highest possible resolution that can be extracted from it. This is



www.manaraa.com

indeed the cost of the mechanism for handling multiresolution. However, we cantrade-o� between the space requirements of a data structure and the performanceof the query algorithms that work on it.From the discussion of previous sections, it follows that basic requirementsfor a data structure encoding an SMC are to support selective re�nement (asoutlined in Section 3), and to support the extraction of application-dependentattributes related to vertices and cells. Moreover, a data structure should supportthe e�cient reconstruction of spatial relationships of an output mesh, for thoseapplications that require it.In the following subsections, we describe and compare some alternative datastructures that have di�erent costs and performances. Those described in Sec-tions 5.1 and 5.2 can be used for any SMC, while those described in Section 5.3can be used only for a class of SMCs built through speci�c update operations.5.1 Explicit data structuresAn explicit data structure directly represents the structure of the DAG describingan SMC. It is characterized by the following information:{ For each vertex, its coordinates.{ For each cell: the Cell-Vertex and the Cell-Arc relations, plus possibly asubset of Cell-Cell relations (as described below).{ For each node: the Node-Arc relation.{ For each arc: the Arc-Node relation, and the Arc-Cell relation.Depending on the speci�c application, additional informationmay be attachedto vertices and/or cells (e.g., approximation errors for simplices). Here, we donot take into account such extra information.Assuming that any piece of information takes one unit, the space requiredby this data structure, except for adjacency relations and attributes, is equal todv+ (k + 3)s + 4a, where v, s and a denote the number of vertices, cells, arcsin the SMC, respectively. Note that 4a is the cost of storing the NA plus the ANrelations (i.e., the DAG structure), while 2s is the cost of storing the CA and ACrelations, i.e. information connecting the DAG and the cells of the SMC.We consider three variants of adjacency information that can be stored foreach cell �:{ Full-adjacency: all four adjacency relations are maintained: co-CC1, co-CC2,counter-CC1;2 and counter-CC2;1. For each (k � 1)-facet of �, co-CC1 andcounter-CC1;2 are stored in the same physical link, since they cannot be bothde�ned; similarily, co-CC2 and counter-CC2;1 are stored in the same physicallink. Thus, we have 2(k + 1) links for each simplex.{ Half-adjacency: only relations co-CC2 and counter-CC2;1 are stored, by usingthe same physical link for each edge e of �, thus requiring (k + 1) links.{ Zero-adjacency: no adjacency relation is stored.



www.manaraa.com

The version with full-adjacency can support incremental adjacency update(see approach 2 in Section 4). The version with half-adjacency can support in-cremental adjacency update only when advancing the front after a node. Withzero-adjacency, adjacency reconstruction must be performed, either as a post-processing (approach 1), or incrementally (approach 3).
0 6000 12000 18000 24000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

no adj

approach 1

approach 3Fig. 5. Query times with adjacency reconstruction on a two-dimensional SMCusing approach 1 and 3; the dotted curve represents query time without adjacencygeneration. The horizontal axis reports the number of triangles in the outputmesh, the vertical axis execution times (in seconds).Figure 5 compares the performance of query algorithms on the zero-adjacencydata structure without adjacency generation, and with adjacencies reconstructedthrough approaches 1 and 3. Adjacency reconstruction increases query times ofalmost a factor of ten. Therefore, it seems desirable that adjacency informationare maintained in the SMC data structure whenever they are necessary in theoutput mesh, provided that the additional storage cost can be sustained.5.2 A Data Structure Based on Adjacency RelationsIn this section, we describe a data structure that represents the partial orderwhich de�nes the SMC implicitly, i.e., without encoding the DAG, but only us-ing adjacency relations. The data structure stores just vertices and cells, and itmaintains the following information:{ For each vertex: its coordinates.{ For each cell: the Cell-Vertex relation, and the four Cell-Cell relations, (using2(k + 1) links as explained in Section 5.1).The space required is dv+ 3(k + 1)s.Given a cell �, removed by an update U , all other cells removed by U arefound through co-CC1 starting at �. Among such cells, a cell �00 is found which



www.manaraa.com

has at least one counter-CC2;1 simplex �00. Finally, starting from �00 (which is acell created by U ), all remaining cells created by U are found by using relation co-CC2. These properties allow us to update the current mesh after any movementof the current front.The size of the adjacency-based data structure is always larger than that ofthe explicit structure with zero-adjacency, while it is comparable with that of theexplicit data structure encoding some adjacency. Note that the space needed tostore adjacency relations tends to explode when the dimension k of the modelincreases. Implementing query algorithms on the adjacency-based structure ismore involved than on the explicit structure, and it requires maintaining lar-ger temporary structures for encoding the internal state (see [11] for details).Therefore, this data structure should be preferred over to the explicit ones onlyif adjacency relations are fundamental in the output structure, and the dimensionof the problem is low. However, the performance of the query algorithms is likelyto degrade with respect to the case of explicit data structures. Storage costs fork = 2; 3 are compared in Table 1.k=d=2structure spaceexplicit (zero-adj) 2v+ 5s+ 4aexplicit (half-adj) 2v+ 8s+ 4aexplicit (full-adj) 2v+ 11s+ 4aadj-based 2v+ 9s k=d=3structure spaceexplicit (zero-adj) 3v+ 6s+ 4aexplicit (half-adj) 3v+ 10s+ 4aexplicit (full-adj) 3v+ 14s+ 4aadj-based 3v+ 12sTable 1. Space requirements of the explicit and the adjacency-based data struc-tures for k = 2; 3.5.3 Compressed Data StructuresMuch of the cost of data structures presented in the previous sections is due tothe explicit representation of the cells and of the cell-oriented relations in theSMC. Indeed, the total number of cells is usually quite larger than the numberof vertices, arcs, and nodes involved in the model, and relations among cellsand vertices are expensive to maintain: for instance, a cell needs k + 1 vertexreferences for representing relation CV.In some cases, the structure of every update exhibits a speci�c pattern, whichallows us to compress information by representing cells implicitly. Examples ofupdate patterns commonly used in building LOD models for surfaces are: ver-tex insertion, which is performed by inserting a new vertex and retriangulatingits surrounding polytope consequently; and vertex split, which is performed byexpanding a vertex into an edge and warping its surrounding cells consequently.



www.manaraa.com

Such update patterns are well de�ned in any dimension d, and they are depictedin Figure 6 for the two-dimensional case.
VERTEX SPLITVERTEX INSERTIONFig. 6. Two types of update patterns that allow the design of compressed datastructures for an MC. The shaded triangles are those involved in the update.Since each update U exhibits a prede�ned pattern, the set of cells it introducescan be encoded by storing just a few parameters within U , that are su�cient todescribe how the current complex must be modi�ed when sweeping the front,either forward or backward, through U . The type and number of parameters de-pend on the speci�c type of update for which a certain compressed data structureis designed.The generic scheme for a compressed data structure encodes just the ver-tices, nodes, and arcs of an SMC. For vertices, it stores the same informationas the standard explicit structure; for nodes and arcs it encodes the followinginformation:{ For each node U : the Node-Arc relation, plus an implicit description of thecells de�ning the update described by U , i.e., an implict encoding of thecombination of Node-Cell and Cell-Vertex relations.{ For each arc: the Arc-Node relation.The space required (except for the implicit encoding of the NC relation com-bined with the CV one) is equal to dv+ 4a.Note that, since cells do not exist as individual entities, attribute informa-tion for them cannot be encoded explicitly. This means that, while the exactgeometry of cells can be obtained through suitable mechanisms associated withupdate parameters, their attributes can only be approximated through informa-tion associated with nodes. In other words, attributes on a node U summarizeattributes of the whole group of cells associated with it. In this sense, such astructure is lossy, because it cannot discriminate between attributes of di�erentcells in the context of the same node. Since the evaluation of the resolution �ltermay depend on cell attributes, because of the approximation, a given cell � mayresult unfeasible even if it was feasible, or viceversa. This fact may cause the ex-traction of a mesh that is either over- or under-re�ned with respect to the inputrequirements.Another subtle issue, which a�ects the performance of the extraction al-gorithms, is the lack of information on the update that must be applied to re�ne



www.manaraa.com

the mesh at a given cell. This is due to the fact that cells are associated withnodes, rather than with arcs. When sweeping the current front after a node U ,the state of the current mesh, and the update information stored in U , allow usto determine which cells are removed, and which cells are created by U . All newcells are tagged with U as their creator. Let � be a cell introduced by U . If � isnot feasible, then we should advance the front after the node U 0 that removes �.Unfortunately, the data structure does not provide information on which child ofU removes �. In order to avoid cumbersome geometric tests to �nd U 0, we adopta conservative approach that advances the front after all children of U . However,such an approach may lead to over-re�ne the extracted mesh with respect to theoutput of the same query answered on a general data structure. Similar problemsarise when sweeping the current front before a node. See [11] for further details.In the following, we describe in more detail two speci�c data structures forthe case of vertex insertion. The �rst data structure applies to SMCs in arbitrarydimension d, while the second structure is speci�c for two-dimensional SMCs.Similar data structures for the case of vertex split can also be obtained, bycombining the ideas presented here with the mechanism described in [8] for asingle update.A Structure for Delaunay SMCs We present a compressed structure de-signed for d-dimensional SMCs in IRd, such as the ones used to represent thedomain of scalar �elds (e.g., for d = 2, the domain of terrains, or of paramet-ric surfaces), based on Delaunay simplicial complexes. A simplicial complex iscalled a Delaunay simplicial complex if the circumsphere of any of its cells doesnot contain vertices in its interior. In two dimensions, Delaunay triangulationsare widely used in terrain modeling because of the regular shape of their trianglesand since e�cient algorithms are available to compute them.In a Delaunay SMC, the initial simplicial complex is a Delaunay one, andevery other node U represents the insertion of a new vertex in a Delaunay com-plex. Thus, every extracted complex is a Delaunay complex.For a set of points in general positions (no d+ 2 points are co-spherical), theDelaunay complex is unique; thus, a Delaunay complex is completely determinedby the set of its vertices, and the update due to the insertion of a new vertex iscompletely determined by the vertex being inserted. The data structure encodescells in the following way:{ at the root, the initial simplicial complex is encoded in the winged datastructure;{ for any other node U , the new vertex inserted by U is encoded (this de�nes animplicit description of the combination of the Node-Cell and the Cell-Vertexrelations).The cost of storing the implicit description is just equal to v. It can bereduced to zero by storing vertices directly inside nodes. The total cost of thisdata structure is equal to dv+ 4a, by considering the space required by the twoDAG relations (i.e., NA and AN).



www.manaraa.com

Given a front on the SMC, the vertex stored in a node U is su�cient todetermine how the corresponding mesh must be updated when sweeping thefront through U , either forward or backward. This operation reduces to vertexinsertion or deletion in a Delaunay simplicial complex.This compression scheme is easily implemented for 2-dimensional SMCs basedon vertex insertions in a Delaunay triangulation. For higher values of the dimen-sion d, the algorithms necessary to update the current Delaunay complex becomemore di�cult [6]. Deleting a point from a Delaunay simplicial complex in threeor higher dimensions, as required when sweeping backward the front, is not easy;we are not aware of any existing implemented algorithm for such task, even inthe three-dimensional case.A Structure Based on Edge Flips This compression scheme can encodeany two-dimensional SMC where nodes represent vertex insertions in a trianglemesh. It is e�cient for SMCs where the number of triangles created by eachupdate is bounded by a small constant b. The basic idea is that, for each nodeU , the corresponding update (which transforms a triangle mesh not containing avertex p into one containing p) can be performed by �rst inserting p in a greedyway and then performing a sequence of edge ips. This process, illustrated inFigure 7, de�nes an operational and implicit way of encoding the combination ofthe Node-Cell and Cell-Vertex relations.
p

σ p

σ2
σ1

p
σ1

σ2

σ1

σ2

p
pFig. 7. Performing an update (insertion of a vertex p) through triangle split andedge ips. At each ip, the pair �1; �2 of triangle sharing the ipped edge isindicated.First, p is inserted by splitting one of the triangles removed by p, that we callthe reference triangle for p. This creates three triangles incident at p. Startingfrom such initial con�guration, a sequence of edge ips is performed. Each edgeip deletes a triangle �1 incident at p, and the triangle �2 adjacent to �1 alongthe edge opposite to p, and replaces them with two new triangles incident at p,by ipping the edge common to �1 and �2. At the end, p has a fan of incidenttriangles which are exactly those introduced by update U .The update represented by a node U is fully described by the new vertex p, areference triangle �, and a sequence of edge ips. Edge ips are represented bynumerical codes. Let us consider an intermediate situation where a ip replacesthe j-th incident triangle of p in a radial order around p (e.g., in counterclockwiseorder starting from the topmost triangle): then we use the number j to code theip. The code of the �rst ip is in the range 0 : : :2 since, at the beginning, there



www.manaraa.com

are only three triangles incident at p. Since each edge ip increases the numberof these triangles by one unit, the code for the j-th ip is in 0 : : : j +1. The totalnumber of edge ips for a vertex p is t � 3, where t is the number of trianglescreated by the update U . Since t � b the ip sequence consists of at most b � 3integers, where the j-th integer is in the range 0 : : : j+1. Therefore, the sequenceof ips can be packed in a ip code of Pb�3j=1(log2(j + 2)) = Pb�1i=3 (log2(i)) =log2((b� 1)!)� 1 bits.The reference triangle � for p is a triangle created by some update U 0 thatis a parent of U in the DAG. Thus, to uniquely de�ne �, it is su�cient to givea reference to U 0 and an integer number identifying one of the triangles incidentin the central vertex of U 0 according to a radial order (e.g., counterclockwise).Conventionally, we organize the data structure in such a way that parent U 0 isthe �rst parent stored for U ; thus, there is no need to encode it explicitly. Thenumber identifying � is in the range 0 : : : b � 1. We can pack the ip code andthe index of � together in log2(b!) � 1 bits. The space required for the implicitencoding of cells in this scheme is v((log2(b!)� 1)) bits.Extending this compression scheme to higher dimensions is a non-trivial task.Edelsbrunner and Shah [6] showed that insertion of a point in a Delaunay sim-plicial complex reduces to a sequence of ips of (k� 1)-facets. This result couldsuggest that a coding based on ips may be possible for k-dimensional DelaunaySMCs built through incremental re�nement. However, in k-dimensions it is notclear how the (k� 1)-facets incident at a vertex could be sorted in such a way toallow the de�nition of a compact ip code. Moreover, it is di�cult to guaranteea bounded degree of vertices in a k-dimensional simplicial mesh and, in any case,the number of ips is not guaranteed to be linear in the degree of the insertedvertex.Discussion We have compared the sizes of the two compressed structures out-lined above with the size of the explicit data structure, for a number of two-dimensional SMCs. On the average, the space occupied by the Delaunay com-pressed structure, and by the one based on edge ips, is about 1=4 and 1=3,respectively, of the space needed by the explicit structure without adjacencies.It is interesting to compare the performance of query algorithms on an SMCwhen it is encoded through an explicit data structure, or through a compressedone, and the quality of the triangle meshes produced by such algorithms. Queryalgorithms provide the same meshes for the same input parameters with all com-pressed data structures, but the performances vary depending on the amount ofwork needed for reconstructing triangles with the speci�c structure.Our experiments have shown that, if the given resolution �lter does not referto triangle attributes (e.g., it depends just on the geometry and location of tri-angles in space), the mesh extracted by a query algorithm using a compressedor an explicit structure are the same. On the contrary, if the resolution �lter usestriangle attributes, then the resulting mesh may be quite di�erent due to theapproximation of such attributes in the compressed structures.



www.manaraa.com

We have experimented with resolution �lters that refer to approximation er-rors associated with triangles of an SMC. The resolution �lter imposes an upperbound on the error of triangles that can be accepted in the solution of a query. Inthe compressed structure, a single error is associated with each node U , de�nedas the maximum approximation error of the triangles created by U . When suchtriangles are reconstructed in the current mesh, they receive the approximationerror of U , which over-estimates their true error, hence forcing the extractionalgorithm to over-re�ne the solution of the query. In this case, meshes extractedfrom the compressed SMC may be twice as large as those obtained from theexplicit structure.The performance of query algortihms has been monitored just for the explicitstructure, and for the Delaunay-based compressed structure. The compressedstructure based on edge ips is still under implementation. The explicit structuresupports the extraction of triangle meshes formed by about 104 cells from SMCscontaining about 105 cells, in real-time. Query algorithms on the Delaunay-basedcompressed structure are much slower. The increase in execution times is dueto the on-line computation of a Delaunay triangulation. We expect better resultswith the structure based on edge ips.6 Concluding RemarksWe have presented several alternative data structures for encoding a SimplicialMulti-Complex.General-purpose data structures are characterized by encoding di�erent sub-sets of the basic relations between the elements of an SMC. Di�erent alternativescan be selected in order to adapt to the needs of a speci�c task, and to trade-o�between space and performance. The SMC has been extended to cell complexesin [11]. However, the main di�culty in extending general-purpose data structuresto general cell complexes lies in the intrinsic complexity of data structures forcell complexes, compared with those for simplicial complexes.Compressed data structures have been de�ned for SMCs in the two-dimensionalcase, in which only the DAG structure is stored, and triangles are encodedthrough an implict rule. Only the structure for Delaunay SMC extends to three ormore dimensions easily, even if the problem of deleting a point from a Delaunaymesh in three or higher dimension is solved only from a theoretical point ofview. We plan to investigate more general compressed structures for higher-dimensional SMCs in the future.Compressed data structures can be much more compact than general-purposeones, but, on the other hand, the performance of extraction algorithms can bedegraded severely, because of additional work necessary to reconstruct the struc-ture of meshes. In the two-dimensional case, it should be remarked that, while theDelaunay-based data structure is more compact than the one based on edge ips,the performance of the extraction algorithms is severely a�ected by numericalcomputation necessary to update the Delaunay triangulation.



www.manaraa.com

Based on the data structures presented here, we have developed an object-oriented library for building, manipulating and querying two-dimensional SMCs,which has been designed as an open-ended tool for developing applications thatrequire advanced LOD features [11]. In the current state of development, thelibrary implements both the explicit and the Delaunay-based data structures, thealgorithms described in [11], algorithms for building an SMC both for terrainsand free form surfaces, application-dependent operations implemented on top ofthe query operations, mainly for GIS applications (interactive terrain visualiz-ation, contour map extraction, visibility computations, etc.). We are currentlyimplementing the structure based on edge ips and a version of the library fordealing with three-dimensional SMCs for representing 3D scalar �elds at variableresolution.An important issue in any application which deals with large data sets isdesigning e�ective strategies to use secondary storage. To this aim, we have beenstudying data structures for handling SMCs on secondary storage. In [11], a disk-based data structure for two-dimensional SMCs is proposed in the context of aterrain modeling application. Such a structure organizes a set of SMCs, each ofwhich describes a subset of a larger area. Individual SMCs reside on separate�les, and two or more of them (i.e., the ones contributing to represent a relevantarea of space) can be merged into a single SMC when loaded into mainmemory toanswer a query. Future work involves de�ning and implementingquery algorithmshaving a direct access to large SMCs resident on disk.AcknowledgmentsPart of the work described in this paper has been developed while the �rst authorwas on leave from the University of Genova at the University of Maryland Insti-tute for Applied Computer Studies (UMIACS). The support of National ScienceFoundation (NSF) Grant \The Grand Challenge" under contract BIR9318183is gratefully acnowledged. This work has been also partially supported by theCoordinated Project \A Library for Applications in Geometric Modeling" of theItalian National Research Council under contract 98.00350.References1. M. de Berg and K. Dobrindt. On levels of detail in terrains. In Proceedings11th ACM Symposium on Computational Geometry, pages C26{C27, Vancouver(Canada), 1995. ACM Press.2. L. De Floriani, P. Magillo, and E. Puppo. VARIANT - processing and visualizingterrains at variable resolution. In Proceedings 5th ACM Workshop on Advances inGeographic Information Systems, Las Vegas, Nevada, 1997.3. L. De Floriani, P. Magillo, and E. Puppo. E�cient implementation of multi-triangulations. In Proceedings IEEE Visualization 98, pages 43{50, Research Tri-angle Park, NC (USA), October 1998.4. L. De Floriani and E. Puppo. Hierarchical triangulation for multiresolution surfacedescription. ACM Transactions on Graphics, 14(4):363{411, October 1995.



www.manaraa.com

5. L. De Floriani, E. Puppo, and P. Magillo. A formal approach to multiresolutionmodeling. In R. Klein, W. Stra�er, and R. Rau, editors, Geometric Modeling:Theory and Practice. Springer-Verlag, 1997.6. H. Edelsbrunner and N. R. Shah. Incremental topological ipping works for regulartriangulations. Algorithmica, 15:223{241, 1996.7. A. Gu�eziec, G. Taubin, F. Lazarus, and W. Horn. Simplicial maps for progressivetransmission of polygonal surfaces. In Proceeding ACM VRML98, pages 25{31,1998.8. H. Hoppe. View-dependent re�nement of progressive meshes. In ACM ComputerGraphics Proceedings, Annual Conference Series, (SIGGRAPH '97), pages 189{198, 1997.9. P. Lindstrom, D. Koller, W. Ribarsky, L.F. Hodges, N. Faust, and G.A. Turner.Real-time, continuous level of detail rendering of height �elds. In Comp. Graph.Proc., Annual Conf. Series (SIGGRAPH '96), ACM Press, pages 109{118, NewOrleans, LA, USA, Aug. 6-8 1996.10. D. Luebke and C. Erikson. View-dependent simpli�cation of arbitrary polygonalenvironments. In ACM Computer Graphics Proceedings, Annual Conference Series,(SIGGRAPH '97), pages 199{207, 1997.11. P. Magillo. Spatial Operations on Multiresolution Cell Complexes. PhD thesis,Dept. of Computer and Information Sciences, University of Genova (Italy), 1999.12. A. Paoluzzi, F. Bernardini, C. Cattani, and V. Ferrucci. Dimension-independentmodeling with simplicial complexes. ACM Transactions on Graphics, 12(1):56{102,January 1993.13. E. Puppo. Variable resolution terrain surfaces. In Proceedings Eight CanadianConference on Computational Geometry, pages 202{210, Ottawa, Canada, August12-15 1996.14. E. Puppo. Variable resolution triangulations. Computational Geometry Theoryand Applications, 11(3-4):219{238, December 1998.15. J.C. Xia, J. El-Sana, and A. Varshney. Adaptive real-time level-of-detail-basedrendering for polygonal models. IEEE Transactions on Visualization and ComputerGraphics, 3(2):171{183, 1997.


